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Using an approximate method of analysis developed earlier for studying heat-exchange processes occurring 

with a periodic intensity, the problem of periodic evaporation of a liquid film from the surface of a heat- 

transfer wall is considered. 

In [ 1 ] a boundary-value problem is investigated for the equation of heat conduction in a wall with a periodic 

boundary condition of the third kind. The concept of "true" coefficient of heat t ransfer  is introduced, which is 

defined as lhe ratio of the heat-flux density q,~ and the temperature drop 0,~, both taken on the heat t ransfer  surface: 

,~ - q , ~ / % .  ( 1 )  

Solving the heat-conduction equation, we determine the temperature field in the wall. Knowing it, we can 

find the averaged coefficient of heat transfer, defined as the quotient of division of the averaged densi ty of the heat 

flux that passes through the heat-transfer surface ((q~)) by the averaged "wall- l iquid" temperature drop ((0,~)): 

a m = (qa)/(O,~). (2) 

It has been suggested that the quantity am, which is determined in a traditional heat-exchange experiment and is 

used in applied calculations, be called the "measured" coefficient of heat transfer. 

Due to the initial periodicity of the processes considered, the true heat- t ransfer  coefficient a can always 

be represented as a superposition of the averaged (a) and fluctuating ~p components: 

a = (a) (l + ~ ) .  (3) 

According to Eq. (1), the averaged true coefficient of heat transfer is 

{a) = (qalOa). (4) 

The formal difference between the procedures of averaging Eqs. (2) and (4) tells us that in general the 

values of am and (a) will not be equal to each other. To evaluate a quantitative measure of their difference, the 
relative quantity is introduced 

- % / ( , ~ ) .  (5 )  

In [1 ] a proof was obtained in general form for the double inequality that determines the limits of the 

change in the quantity e: 

(1/(1 + ~p))-l < e <__ 1 , (6) 

From Eq. (6) it follows that  the measured value of the hea l - t rans fe r  coefficient (am) is smal le r  than  the 

corresponding averaged true value ((a)). The quantity ~ attains its maximum value (ema x = 1) in the limiting case 
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of infinite thermal conductivity of the wall. Here,  we obtain a m = { a ) .  In the alternative case of a wall with zero 

thermal conmductivity the quantity e attains its minimum value: t3mi n = I1/(1 + ~) I - I  - 1. For this value there  is 

a maximum difference between a m and (ce). 

The  subject of the analysis in [1 I is a boundary-value problem for the equation of heat conduct ion in a 

heat- t ransfer  wall that is a plate of thickness 5 with boundary condition (1) prescribed on its inner  wall (at x = 5). 

On the outer  surface of the plate (at x = 0) one of the s tandard  thermal boundary conditions is prescribed: 

a) 0 = const (constant temperature) ;  b) q0 = cons( (constant heat-f lux densi ty);  c) q0 = 0, qv = const (adiabatic 

outer surface, constant power of the heat sources). Furthermore,  the latter two cases are equivalent as pertains to 

the field of t empera tu re  f luctuat ions,  and therefore  only first two thermal  boundary  condi t ions  shou ld  be 

distinguished: a) 00 =cons t ;  b) qo = const. 

In [2, 31 a method of approximate solution is suggested for a heat conduction equation with a periodic 

boundary condition of the third kind. Its efficiency was proved by a comparison with results of a number  of exact 

solutions obtained in [1 I. 

In [4 1 a model is suggested for a conjugate process of heat exchange occurring with a periodic intensity,  

namely, the problem of periodic collisions with a heat- t ransfer  wall of a semiinfinite body of liquid with a uniform 

initial distribution of temperatures.  It is assumed that after termination of the interaction the heated body of liquid 

is instantly replaced by a new-cold one. However, this physically simple formulation of the conjugate problem 

encounters substantial mathematical difficulties when attempts at a rigorous solution of it are made.  Thus,  even in 

a simplified formulation (for a semiinfinite body of the wall) we obtain a system of W i e n e r - H o p f - t y p e  integral 

equations [5 ]. 

Application of the method developed in [2, 3 1 made it possible to find an approximate analytical solution 

of the indicated model problem. As a result, in [4 ] it was found that the relative quanti ty e def ined by relations 

(5) and (6) differs very little (by no more than 20%) from unity.  This means that the problem of periodic 

interaction of heat-carr ier  bodies with a heat- t ransfer  wall, which physically represents "strong" nonsta t ionar i ty  of 

heat exchange, is characterized by a very "weak" thermal effect of the wall on the averaged heat transfer,  i.e., the 

measured coefficient of heat t ransfer  (a m) is virtually always equal to the averaged true coefficient ((ce)). We note 

that here the amplitude of the temperature fluctuations on the heat- t ransfer  surface generally depends noticeably 

on the thermophysical  properties and thickness of the wall. 

Below, we consider another  possible type of periodic boundary  condition of the third kind on a heat - t ransfer  

surface, namely,  time fluctuations of the true thermal resistance. This approach is of interest,  in particular, in the 

problem of periodic evaporation of a liquid film from a wall surface. We note that the conjugate problem of film 

evaporation from a wall surface with a uniform initial distribution of temperatures  (i.e., in the "single nonperiodic" 

aspect) was investigated in detail in [6 ]. 

The  process of evaporation of a thin liquid film is described by the heat-balance relationship 

dh (7) 
rp --d-[=q, 

where r is the specific heat of the phase transition and p'  is the liquid density. From Eq. (7) an equation for the 

time of complete evaporation of the film to follows: 

r 

rp % (8) 
t o - (q) , 

where (q) is the mean heat-flux density over the time to. 

It is assumed that after complete evaporation of the film, its place is instantly occupied by a "new film" of 

the same initial thickness h o. Here,  because of the very small thickness of the film, heat is t ransfer red  through it 

by heat conduction. From this it follows that in the case considered, the magnitude of the averaged (over the time 

of film evaporation) thermal resistance of the film for any combination of thermophysical properties and thickness 
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of the wall, provided that q = idem, will remain unchanged, (R) = ho/2A' = idem. Thus,  the value of R will change 

periodically in time 

R = (R) (l  + 9"), (9) 

where 9' is the fluctuating component of the true thermal resistance. 

The boundary  condition on the heat- t ransfer  surface that reflects the process of periodic evaporation of the 

thin liquid film is 

06 = Rq6 (1 O) 

or in expanded form 

(1 + 9") ( l  + = y  - ( l l )  

Here  q" - q'(t)/(q) is dimensionless fluctuations of the heat-f lux densi ty,  ~-i is the dimensionless temperature  

fluctuations, 7 - Rm/(R)  is the dimensionless coefficient of the thermal effect of the wall, R m is the exper imental  

thermal resistance of the film, related to the measured coefficient of heat t ransfer  by the relation ¢XmR m --- 1, and 

,o ) 

Use of the approximate method developed in [2, 3 ] leads to a result similar to the problem of periodic 

collisions of semiinfinite bodies of liquid with a heat- t ransfer  wall considered in [4 ], namely that the experimental  

value of the thermal  resistance of the film Rm is virtually equation to the averaged true value (R). 

Then we will determine the temperature fluctuations on the heat- t ransfer  surface as a function of the 

parameter  (R). 

Omitting intermediate calculations, we write the final relation that determines the fluctuations of the heat 

fluxes and the quanti ty 7: 

q ' =  -- 1 + 7 + g  (13)  
1 + g + 9 ' '  

The dimensionless parameter  is g = G/(R) ,  G = tanh 6/¢-~to at TO = const, G = c tanh 6/av~oo at qo = const, 

(~)2 = 2Cp p (0) (14) 

~.p'r ' 

where (0) is the temperature  difference averaged over the time of complete evaporation of the film. 

For physical applications associated with the process of periodic evaporation of a liquid film from a wall 

surface under  conditions of thermal conjugation [6 1, it is important to know the law by which the temperature  of 

the heat- t ransfer  surface changes in time. As calculations by relations (13) and (14) show, the following linear 

approximation is satisfactory: 

0 = 0ma x -- (0ma x -- 0min) l", (15) 

where t ' -  t / t  o is the dimensionless lime. 

The maximum (0max) and minimum (0rain) values of the temperature difference are  de termined  from the 

relations 

1 + 2 g .  (16)  
Omax= l + g ' 
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1 (17) 
0rain ~ 1 + g" 

It is seen from Eqs. (16) and (17) that the following versions will be limiting: 

l)g --, 0 (either the thermal conductivity of the wall tends to infinity, or the wall thickness tends to zero 

under  the thermal boundary  condition T O = const): 0 m a  x = 0 m i  n = I. 
2) g ~ of (either the thermal conductivity of the wall tends to zero, or the wall thickness tends to zero 

under  the thermal boundary  condition q0 = const): 0 m a  x "-~ 2 ;  0 m i  n --~ 0. 

The work was carried out with the support from the Russian Fundamental  Research Fund,  grant No. 

95-02-04960-a. 

N O T A T I O N  

t, time; x, transverse coordinate; q,~, heat-f lux density;  0,~, temperature  difference on the hea t - t rans fe r  

surface; a ,  true coefficient of heat transfer; am, experimental  coefficient of heat transfer;  ~,, periodic component  

of the true coefficient of heat transfer;  e = am/ (a ) ,  ratio of the measured and averaged true values of the heat-  

t ransfer  coefficient; c3, thickness of the plate; qv, volumetric power of the heat sources; r, specific heat of the 

phase change; p', densi ty of the liquid; 2', thermal conductivity of the liquid; a', thermal  diffusivity of the liquid; 

t 0, time of complete evaporation of the film; R = h/A', true thermal resistance of the film; 9', periodic component  

of true thermal resistance of the film; q', fluctuations of the heat-f lux densi ty;  ~'= q'/(q), dimensionless fluctuations 

of the heat flux density; 0 ' ,  temperature  fluctuations; ~-i= -2'O'/((q)(R)), dimensionless tempera ture  fluctuations; 

y - Rm/(R), dimensionless coefficient of the thermal effect of the wall; Rm, measured thermal  resis tance of the 

film; (R), dimensionless true thermal  resistance of the film; g - -  G/(R), dimensionless parameter  of the thermal  

effect of the wall; G, function of the wall thickness effect; t '= t/to, dimensionless time; 0ma x, 0rain, dimensionless 

values of the maximum and minimum temperature difference in a period, respectively; ( ) ,  averaging over the 

period of the fluctuations. Subscripts: 5, at x = 5; m, measured; max, maximum; rain, minimum; 0, initial value. 
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